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Summary:

* 1D simulation perspective: Post-shot models agree with yield data to within a
factor of ~2 at low implosion velocities, but the models diverge from the data
as the velocity and convergence ratio increases.

e 2D simulation perspective: Integrated hohlraum-capsule post-shot models
agree with primary data for most implosions, but over predict yield and DSR
for a few of the highest velocity implosions.

* High-resolution 3D post-shot capsule-only modeling captures much of the
delivered performance of the one shot currently simulated.

From the 1D simulation perspective, post-shot models agree with yield data to within
a factor of ~2 at low implosion velocities, but the models diverge from the data as the
velocity and, somewhat equivalently, convergence ratio of the implosion increases
(see Fig. 1). For implosion velocities above 370 km/s, the 1D models predict ignition
in contradiction to the data. The prediction of ignition is associated with the ideal
nature of 1D models and an over-prediction of fuel and hot spot areal density by
~25%. Interestingly, of the high-velocity implosions it is in fact the 165 um ablator
shot that is closest to the 1D models, not furthest - this is because the model captures
the reduced inertial confinement that is associated with low ablator remaining mass
which “turns-off” the models’ tendency to ignite and propagate at high velocity.
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Fig 1: 1D simulations, using multi-frequency FDS drives that are calibrated to shock-timing and
implosion trajectory experiments, show divergence from measurement of total neutron yield as
the implosion velocity increases. Both LASNEX and ARES (and HYDRA, but not shown) predict
ignition for the high-foot above 370 km/s, but this is not indicated in the data. (“mbndc” FDS
source from J. Salmonson and ARES 1D model from ]. Hayes). Shot N140819 (the 165 um shell
shot) is shown on the right-side plot at an implosion speed of ~390 km/s

* This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
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From the 2D simulation perspective, modest resolution integrated hohlraum-
capsule post-shot models of yield performance agree with data for the lowest
velocity implosions, but again diverge from the data as the velocity increases (Fig.
2)1. However, even for the highest velocity implosions the degree of disagreement
is only a factor of ~2x for most shots. These 2D integrated hohlraum-capsule
models are too low resolution to include known impactful engineering features such
as the tent or fill-tube, or to capture surface finish-seeded instabilities, but are
constructed to emulate the final low-modes of the implosions hot spot at bang time.
These calculations imply that reducing low-mode asymmetries in the implosions
could result in significant performance improvement.
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Fig 2: Similar to Fig.1, high-foot yield, from experiment and 2D integrated hohlraum-capsule
simulation, is plotted against velocity (as calculated from the model that is calibrated to shock-
timing, implosion trajectory, and hot-spot shape data). Unlike the 1D models, the 2D model
matches most data across a range of velocities. For a few points between 350-370 km/s, the
model over-estimates performance by half and order of magnitude.

High-resolution 2D capsule-only modeling (which includes ablator and DT ice layer
surface characterization) of the high-foot database is ongoing. A 2D model of
N140819 that includes asymmetries, measured surface roughness, and a tent, gives
Y = 1.2e16 (5.47e15 measured), DSR = 4.3% (3.5% measured), Tion = 4.5 keV (4.7
keV min DD measured), and PO = 32 um (30.7 um measured in time-integrated x-
ray). This model doesn’t include the known melt defect in the capsule that was
discovered at shot time, but is within the factor of two on the yield and surprisingly
close on Tion. Ablator optical depth data along a single line-of-sight shows no ablator
remaining mass along that line-of-sight. Moreover, FNAD data imply large
modulations in fuel areal density. It is possible that the melt defect perturbation on
the capsule aggravated the areal mass variation and contributed to forming very
thin regions of the shell that allowed the hot spot to decompress through those
weak spots (enthalpy gradient driven flow) and/or burn-thru - ongoing modeling
including this melt feature is suggestive of such an effect.

High-resolution 3D post-shot capsule-only modelin? is an extremely time-consuming
process. So, while this work is ongoing, only one 3D post-shot high-foot model has
been completed, for shot N130927. This model includes the engineering features of
the tent membrane (using a surrogate mesh perturbation), fill-tube, capsule and DT
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ice layer surface roughness, capsule and DT ice layer low-mode shape, and low-mode

t=16.53 ns
keV (bang time) glem3 N130927

l 3.0 ~375.0 bang time (ns) 16.56 16.53 16.59£0.03
burn width (ps) 118 1435 188430
2.0 250.0
x-ray P, (um) 313 314 35.3+3.0
1.0 1250 y.ray M, (um) 432 457 498415
_ 00  PNIPg (um) 36.9 27.78 324
DSNI P, (um) 54.8 51.18 5544
DT Ty, (keV) 4.1 3.95 4.4310.15

47 DSR (%) 4.7 3.58 3.48+0.17
\ Y1315 Mev 4.4 %10 3.1 x 1015 4.5+0.1 x 1015
fill tube

defect
*average over three realizations
\ § from single-time PMC step at bang time

tent
defect

Fig 3: 3D simulation of high-foot shot N130927, including the effects of surface roughness, tent
perturbation, fill-tube perturbation, and low-mode drive asymmetries gives net fusion
performance metrics that are close to measured.

drive asymmetries from companion hohlraum simulations. This model captures
much of the delivered performance of the shot as shown in the Fig. 3 table, albeit the
prolate shape at bang time is somewhat inconsistent with the observed oblate shape.

Ultra high-mode (~1200) simulations to study fuel-ablator mix in the presence of
other lower mode distortions have been performed for low-foot implosions.? Those
simulations show no significant coupling between the high modes and lower modes
that dominate the hot spot. Ultra high-mode simulations of fuel-ablator mix have
been performed for high-foot implosions, but not over a large enough domain to
include coupling to the lowest modes. High-mode-only high-foot simulations suggest
short wavelength mixing at the fuel-ablator interface should not be a problem,
although this has yet to be demonstrated experimentally.

L A. Kritcher, et al. “Integrated modeling of cryogenic layered High-foot Experiments at the NIF,” in
preparation for submission to Phys. Plasmas (2015).

2D.S. Clark, et al., Phys. Plasmas, 22, 022703 (2015).
3 D.S. Clark, private communication (2015).

State of Understanding Capsule Modeling (LLNL-TR-674446) | 3



